In a broad sense, the transcriptome refers to the complete set of all transcripts in a cell under a certain physiological condition, including messenger RNA, ribosomal RNA, transfer RNA and non-coding RNA; in a narrow sense, it refers to the complete set of all mRNAs. Proteins are the main bearer of cell functions; the proteome provides the most direct description of cell functions and states. The transcriptome is the key tool to study gene expression, and is an inevitable link connecting the genetic information of the genome and the proteome of biological functions. The regulation of transcription level is the most studied and the most important regulation method of organisms.
Ⅰ. Next-generation transcriptome sequencing
RNA-Seq (RNA sequencing), also known as transcriptome sequencing, is an emerging technology that uses next-generation sequencing platforms for transcriptome analysis. It captures sequence and expression information of all transcripts, including protein-coding various non-coding RNAs, and the expression abundance of different transcripts generated by alternative splicing of genes. While analyzing the structure and expression level of transcripts, unknown transcripts and rare transcripts are also found, so as to accurately analyze important issues in life sciences such as gene expression differences, gene structure variations, and screening molecular markers.
In addition, RNA-Seq can directly analyze the transcriptome of most organisms, because it does not need to know the gene information of the target species, which shows a special advantage. Before the advent of RNA-Seq, there was a limited understanding of the transcriptome. RNA-Seq has been shown to be efficient and fast, and has significantly advanced people's understanding of the transcriptome.
Ⅱ. Transcriptome sequencing platform
Both high-throughput sequencing platforms can sequence the transcriptome. Since the two platforms have their own advantages and disadvantages, they need to be flexibly selected for different sample conditions. The advantages of transcriptome sequencing technology include large amount of data obtained by a single sequencing, higher coverage obtained, and more low-abundance transcripts to be detected, which is more advantageous in the transcriptome analysis of species with known genome sequences. Moreover, it offers additional advantages in the transcriptome analysis of unknown genome sequence species, and its longer read length facilitates splicing and better transcript data can be obtained.
Ⅲ. Functions of transcriptome sequencing products
1. Obtain transcript information of species or tissues;
2. Obtain information about genes on transcripts, such as gene structure, function, etc.;
The Role of Microfluidic Platforms in Drug Development and TestingJuly 18, 2024In the dynamic landscape of drug development and testing, the advent of microfluidic technology stands as a revolutionary advancement. Among the frontrunners in this innovation is CapitalBio, a brand ...view
Basic Performance of In Vitro Diagnostic Reagent ProductsMarch 9, 20231. Blank IVD in vitro diagnostic reagentsThe reagent blank can be understood as the value detected when the content of the substance to be tested is the theoretical zero value. The general practice is...view
A Deep Dive into CapitalBiotech's LuxScan TechnologyFebruary 8, 2024Microarrays have revolutionized the field of life sciences, enabling researchers to analyze thousands of genes simultaneously. This technology underpins advancements in various fields, from drug disco...view
16S vs 18S vs ITS SequencingMarch 7, 2024CapitalBio, a leader in microbiome research, delves into the fascinating world of microbial identification through 16S, 18S, and ITS sequencing technologies. This article explores these techniques to ...view
Talking about Gene SequencerJune 20, 20221. Definition of Gene SequencerGene sequencer, also known as DNA sequencer, is an instrument for determining the base sequence, type and quantification of DNA fragments. It is mainly used in human gen...view