Preimplantation testing refers to the chromosomal or specific gene testing of embryos before implantation. This is done to select embryos that do not carry genetic defects for implantation into the uterus. This allows couples facing high genetic risks during pregnancy to avoid natural miscarriages, prenatal termination, or birth defects caused by genetic diseases. The ultimate goal is to achieve healthy offspring.
The Principle of Preimplantation Testing
By using high-throughput sequencing technology (Next Generation Sequencing, NGS), single-cell whole-genome amplification products are sequenced to obtain thousands of reads (base sequences). These are then compared to reference sequences of the human genome to map the reads onto the genome.
By selecting windows of a certain length, reads within these windows can be counted, thereby serving as the signal value (digital signal) for that window. This signal tends to stabilize as the sequencing depth and window size increase. These windows with stable signal values are the basis for determining chromosomal abnormalities. For a diploid region (or an entire chromosome), if the signal value is 1.5 times the normal value, it can be determined as a duplication (or triploid). If it is 0.5 times the normal value, it can be determined as a deletion (or haploid).
Benefits of Preimplantation Testing
Increased Clinical Pregnancy and Live Birth Rates
Preimplantation testing screens embryos for genetic abnormalities before implantation, thereby excluding embryos carrying genetic diseases or chromosomal anomalies. This helps in selecting healthy embryos for transfer, increasing the chances of successful pregnancy.
Reduced Risk of Early Miscarriage
Preimplantation testing can effectively identify embryos with chromosomal abnormalities, such as numerical or structural anomalies. By excluding these embryos, the risk of transferring unhealthy embryos into the uterus is avoided, significantly reducing the risk of early miscarriage.
Reduction in the Birth of Children with Genetic Defects
Preimplantation testing helps in screening embryos that carry genetic defects or high-risk genes, preventing the implantation of embryos with hereditary diseases such as Thalassemia, Cystic Fibrosis, or Down Syndrome.
Increased Success Rate of Single Embryo Pregnancies
Gene screening before embryo implantation can also effectively increase the success rate of single embryo pregnancies. By selecting the healthiest embryo among multiple embryos, complications associated with multiple pregnancies, such as premature birth, low birth weight, and pregnancy-induced hypertension, can be avoided.
Alcohol Metabolite Test Reveals Your True Drinking CapacityNovember 13, 2024Significance of Alcohol Metabolite TestIndicates an individual's ability to metabolize and detoxify alcohol, guiding reasonable and healthy drinkingReveals a high-risk tendency for major diseasesM...view
Microbial Genome Sequencing's Impact on AgricultureFebruary 26, 2024Microbial genome sequencing has revolutionized the field of agriculture by providing valuable insights into the genetic makeup of microorganisms that play a crucial role in soil health, plant growth, ...view
Sincere Advice: Everyone Should Test Flora IntestinalNovember 13, 2024What Is Test Flora IntestinalTest Flora Intestinal, as the name suggests, involves analyzing the genetic information of microorganisms in the gut to assess an individual's health status and future...view
Why Do You Need Chromosomal Microarray Analysis?April 4, 2023Chromosomes are genetic material and the carriers of genes. The human body has 23 pairs of chromosomes, with 22 pairs being common to both sexes and called autosomes. The other pair determines sex and...view